

Colegio de ingenieros del Perú

DCIR Ingenieros S.R.Ltda. Geomecánica en Minería y Obras Civiles

Geomecánica Aplicada al Minado Subterráneo 24 y 25, Julio 2020

DCR Ingenieros S.R.Ltda.

Geomecánica en Minería y Obras Civiles

Consultas: dcordova@dcr.com.pe

04

Aspectos importantes para el modelamiento numérico

Geomecánica de los métodos de minado (casos prácticos)

Contenido

Recopilación de data geomecánica

Caracterización del macizo rocoso y sus componentes

La presencia del agua en el macizo rocoso

1e

Mediciones de esfuerzos in situ en Perú

Clasificaciones geomecánicas

El modelo geomecánico

Contenido

Sammy Lucano Polo

1a

Recopilación de data 01 geomecánica

Contenido

Caracterización del macizo rocoso y sus componentes

La presencia del agua en el macizo rocoso

Mediciones de esfuerzos in situ en Perú

Clasificaciones geomecánicas

El mod geomecanico

Proceso de caracterización

- Observaciones o mediciones en el terreno
- Datos cualitativos o cuantitativos

Cuantitativos (medir):

Medidas de tendencia central Variabilidad Función de distribución **Cualitativos (obs.):** No se puede medir Porcentajes

Anisotropía "Anisotropy is everywhere" N. Barton

- Variación de las propiedades en función de la dirección (mide o observa).
- La masa rocosa tiende a ser anisotrópica.
- La anisotropía de un macizo rocoso esta controlada por el origen geológico

De la caracterización al diseño

Rocas ígneas

Rocas metamórficas

WGENIEROS BEL Population of the second secon

Rocas sedimentarias

TABLE 3.4 Classification of Sedimentary Rocks					Organic	Organic Calcareous	Limestone	Fossiliferous,	Calcite
Method of formation	Classification	Rock	Description	Major mineral constituents		Carbonaceous (siliceous, ferruginous, phosphatic)	Coal	grained	
Mechanical	Rudaceous	Breccia Conglomerate	Large grains in clay matrix	Various	Chemical	Ferruginous	Ironstone	Impregnated limestone or claystone (or precipitated)	Calcite, iron oxide
	Arenaceous	Sandstone	Medium, round grains in calcite matrix	Quartz, calcite (sometimes feldspar, nica)		Calcareous (siliceous, saline)	Dolomite limestone	Precipitated or replaced limestone, fine grained	Dolomite, calcite
		Quartzite	Medium, round grains in silica matrix	Quartz					
		Gritstone	Medium, angular grains in matrix	Quartz, calcite, various					- 3
		Breccia	Coarse, angular grains in matrix	Quartz, calcite, various	A CONTRACT				and
	Argillaceous	Claystone	Micro-fine- grained plastic texture	Kaolinite, quartz, mica		S Pa			2 4
		Shale	Harder-	Kaolinite,	N. AN				
		Mudstone	compacted clay	quartz, mica		C North		AN TO	
					A CONTRACTOR				

(Zhang, 2017)

Caracterización de la roca intacta Propiedades

La roca intacta consiste de una fase sólida y una fase de vacíos (puede estar ocupada de aire o agua)

i. Densidad total:

 $\rho_{total} = M_{total} / V_{total}$

ii. Densidad seca:

 $\rho_{seco} = M_s / V_{total}$

iii. Porosidad:

 $n = V_v / V_{total} x 100\%$

iv. Grado de saturación:

 $s = V_w / V_s x 100\%$

Density ρ (g/cm³) 1.5 2.02.5 3.0 Air (Zhang, 2017) Water Mun V. Depth z (km) 2 V_{total} 湯 M_{total} 3 4 Solid M_s **Dry Specific Gravity Rock Type** Porosity (%) Granite 2.6 - 3.00.2 - 3.0Diorite 2.8 - 3.00.2 - 3.0(ISRM - Zhao, 2016) 2.5 - 2.90.2 - 5.0Andesite 2.2 - 2.8Basalt 0.2 - 20Sandstone 1.9 - 2.71.5 - 252.0 - 2.42.0 - 4.0Shale 2.6 - 2.80.3 - 4.0Limestone 0.2 - 1.0Gneiss 2.6 - 3.02.6 - 2.81.5 - 4.0Slate Quartzite 2.6 - 2.80.2 - 1.0

Hardness – Martillo de Schmidt (laboratorio o campo)

- La capacidad de un material de resistir deformaciones permanentes.
- En la roca intacta depende de muchos factores incluyendo su composición mineral y densidad.
- Típicamente esta representada con el número de rebote del martillo Schmidt.
- Le número de rebote (MS) puede ser correlacionado con propiedades físicas o mecánicas de la roca intacta. Ejemplo, resistencia a la compresión uniaxial

(Modificado, ISRM - Zhao, 2016)

Durabilidad (laboratorio)

- Mide la resistencia de los bloques de roca intacta a los ciclos de meteorización.
- En laboratorio se simulan la meteorización mediante ciclos de saturación, secado e impacto para evaluar su integridad.
- El ensayo de durabilidad reporta el índice de durabilidad

$$I_{\rm d}(2) = \frac{W_{\rm F} - C}{B - C} \times 100 \, (\%)$$

- *I*_d Índice de durabilidad
- $W_{\rm F}$ Masa tambor + roca seca (2s)
- *B* Masa tambor + roca seca (1s)
- C Masa del tambor

TABLE 3.13 Slake Durability Index Classification					
<i>I</i> _d (2) (%)	Durability Classification				
0–25	Very low				
25–50	Low				
50–75	Medium				
75–90	High				
90–95	Very high				
95–100	Extremely high				

Based on Franklin, J.A., Chandra, A., 1972. The slake durability test. Int. J. Rock Mech. Min. Sci. 9, 325–341.

Weathering Grades and Rock Types	Average Id2 (%)	Durability Classification based on Franklin & Chandra (1972)	
Completely weathered sandstone	0.3	Very low	
Completely weathered sandstone with iron staining	15.0	Very low	
Highly weathered orange sandstone	22.0	Very low	(Wo
Highly weathered iron recemented sandstone	46.0	Low	ong, 2
Highly weathered iron banded fractured sandstone	67.0	Medium	018)
Slightly weathered sandstone	87.0	High	
Slightly weathered iron recemented sandstone	98.0	Extremely high	
Fresh grey sandstone	91.0	Very high	

Índice de carga puntual (campo y laboratorio)

 Se recomienda reportar el I_{s(50)} (diámetro equivalente a 50 mm) para estandarizar la escala.

 $I_{s(50)} = (P / D_e^2) (D_e / 50)^{0.45}$

 Índice de carga puntual de anisotropía (I_{a(50)}) es el ratio entre el I_{s(50)} medido perpendicularmente entre el medido paralelamente a los planos de debilidad.

Rock type	I _{s(50)}	
Granite	5 – 15	
Gabbro	6 – 15	
Andesite	10 – 15	
Basalt	9 – 15	ע
Sandstone	1 – 8	= -
Mudstone	0.1 – 6	liao
Limestone	3 – 7	2
Gneiss	5 – 15	0)
Schist	5 – 10	
Slate	1 – 9	
Marble	4 – 12	
Quartzite	5 – 15	

Tracción indirecta (laboratorio)

- El ensayo más usado por la facilidad de operación.
- Se emplean discos con una dimensión t = D/2.
- La fractura se genera por tensión a lo largo del diámetro del disco.

σ_t = 2P / π Dt

- Los resultados de los ensayos de tracción indirecta deben ser reducidos por un factor según el origen geológico de la roca intacta.
 - 0.7 para rocas sedimentarias
 - 0.8 para rocas ígneas
 - 0.9 para rocas metamórficas
- UCS es de 8 a 20 veces mayor que la resistencia a tensión.

(Perras & Diederichs, 2014)

Tracción (laboratorio)

Compresión uniaxial (laboratorio)

60°

) **90**°

Deformación módulos elásticos (laboratorio)

- El modulo de Young (E) y la relación de Poisson (v) se determinan experimentalmente de la curva esfuerzo-deformación.
- Como tendencia altos UCS corresponden a altos módulos de Young (E).
- La relación de Poisson (v) varia entre 0.1 a 0.4 para la mayoría de las rocas

(ISRM - Zhao, 2016)

Rock Type	UCS (MPa)	E (GPa)			No. of	Poisson's Ratio			
Granite	100 - 300	30 - 70	Rock Type	No. of Values	Rock Types	Maximum	Minimum	Mean	Standaro Deviatio
Diorite	100 - 350	30 - 100	Basalt	11	11	0.32	0.16	0.23	0.05
Andesite	100 – 300	10 – 70	Diabase Dolostone	6 5	6 5	0.38 0.35	0.20 0.14	0.29 0.29	0.06
Basalt	100 – 350	40 - 80	Gabbro	3	3	0.20	0.16	0.18	0.02
Sandstone	20 – 170	15 – 50	Gneiss	11	11	0.40	0.09	0.22	0.09
Shale	5 – 100	5 – 30	Granite	22	22	0.39	0.09	0.20	0.08
Limestone	30 – 250	20 – 70	Marble	19 5	19 5	0.33	0.12 0.17	0.23	0.06
Gneiss	100 – 300	30 – 80	Quartzite	6	6	0.22	0.08	0.14	0.05
Schist	70 – 150	5 - 60	Sandstone	12	9	0.46	0.08	0.20	0.11
Slate	50 – 180	20 - 90	Schist	12	11	0.31	0.02	0.12	0.08
Quartzite	150 – 300	50 – 90	Shale Siltstone	3 3	3	0.18 0.23	0.03 0.09	0.09 0.18	0.06 0.06

(ISRM - Zhao, 2016)

(Zhang, 2017)

Ratio módulo

Compresión triaxial (laboratorio)

- Los esfuerzos en profundidad poseen 3 dimensiones es necesario entender el comportamiento de la roca en este entorno (diferente al UCS).
- La verdadera compresión triaxial significa 3 esfuerzos principales diferentes $(\sigma_1 > \sigma_2 > \sigma_3 > 0).$
- La compresión axisimétrica o tradicionalmente llamada compresión triaxial en donde $(\sigma_1 > \sigma_2 = \sigma_3 > 0).$

- Confinamiento de 0 a $\sigma_c/2$.
- Mínimo 5 niveles de confinamiento diferentes.
- Mínimo 2 roturas por cada nivel de confinamiento
 - (Read & Stacey, 2009)

(Villaescusa, 2014)

Roca intacta Correlaciones

Índice de carga puntual vs compresión uniaxial

TABLE 7.4 Correlations Between Unconfined Compressive Strength σ_c and Point Load Index $I_{s(50)}$ —cont'd

Correlation	r ²	Rock Type	Reference
$\sigma_{\rm c} = 10.9 I_{\rm s(50)} + 49.0$	0.8	Granite	Mishra and Basu
$\sigma_{\rm c} = 11.2 I_{\rm s(50)} + 4.01$	0.84	Schist	(2012)
$\sigma_{\rm c} = 13.0 I_{\rm s(50)} - 5.19$	0.84	Sandstone	
$\sigma_{\rm c} = 14.6 I_{\rm s(50)}$	0.88	All of the above 3	
$\sigma_{\rm c} = 20 I_{\rm s(50)}$		Metasiltstone	Li and Wong
$\sigma_{\rm c}=\!21I_{\rm s(50)}$		Metasandstone	(2013)
$\sigma_{\rm c} = 20.1 I_{\rm s(50)} - 17.1$	0.8	Travertine, marble	Palassi and Emami (2014)

Notes: Both σ_c and $I_{s(50)}$ are in MPa and r^2 is the determination coefficient.

Índice de carga puntual vs tracción

 $\sigma_t = 1.25 I_{s(50)}$ (ISRM - Zhao, 2016) Porosidad vs compresión uniaxial

			U _c	- uc	
	а	b	r ²	Rock Type	Reference
	74.4	0.048	0.79	Sandstone	Palchik (1999)
	210.1	0.821	0.67	Mudrocks: claystone, clay shale, mudstone, mud shale, siltstone, and silt shale	Lashkaripour (2002)
(Zhang	273.1	0.076	0.87	Chalk	Palchik and Hatzor (2004)
. 201	195.0	0.210	0.79	Sandstone, limestone, basalt, and granodiorite	Tuğrul (2004)
2	135.9	0.048		Sandstones	Rabbani et al.
	143.8	0.0695		Carbonates and limestones (5 < n < 20%, 30 < σ_c < 150 MPa)	(2012)
	135.9	0.048		Carbonates and limestones ($0 < n < 20\%$, $10 < \sigma_c < 300$ MPa)	

= aa-bn

- Tener en cuenta las características del ambiente donde se realizó la correlación.
- Realizar correlaciones específicas para los tipos de roca y ambiente intrínseco del proyecto.

Orientación y número de familias de discontinuidades

(Lisle & Leyshon, 2004)

Familia de discontinuidades

Conjunto de discontinuidades aproximadamente paralelas.

Por lo general existen varias familias de discontinuidades.

(ISRM SM, 1978)

Espaciamiento y frecuencia de fracturamiento

Espaciamiento aparente

Description

x, y and z directions

Extremely close spacing

Very close spacing

Moderate spacing

Very wide spacing

Extremely wide spacing

Close spacing

Wide spacing

on the plane

El espaciamiento real se puede calcular mediante geometría

Joint Spacing (m)

< 0.02

0.02 - 0.06

0.06 - 0.2

0.2 - 0.6

0.6 - 2

2 - 6

> 6

Frecuencia de fracturamiento

Número de discontinuidades por metro lineal (λ) es decir el inverso del espaciamiento (s).

$$\lambda = 1 / s_j$$
 o $s_j = 1 / \lambda$

Conteo cuando existe más de una familia de discontinuidades

Joint set A, average spacing = 0.2 m

1/0.33 = 3

Rock mass have 2 joints sets A and B. Average spacing = ??

(ISRM - Zhao, 2016)

Persistencia y rugosidad

Persistencia

Extensión areal de una discontinuidad. Generalmente cuantificada por la longitud de la traza en una exposición rocosa.

ISRM Suggested Description	Surface Trace Length (m)
Very low persistence	<1
Low persistence	1 – 3
Medium persistence	3 – 10
High persistence	10 – 20
Very high persistence	> 20

Rugosidad

- La rugosidad de la superficie de una discontinuidad es una medida de la irregularidad o el ondulamiento relativo a tu plano medio.
- Rugosidad se caracteriza por el ondulamiento a larga escala y por la irregularidad a pequeña escala.

(ISRM - Zhao, 2016)

Rugosidad de la discontinuidad

Coincidencia (JMC) y apertura

Coeficiente de coincidencia (JMC)

- Representa el porcentaje de contacto entre las dos superficies de una discontinuidad.
- La alteración de las paredes de la discontinuidad puede disminuir el porcentaje de coincidencia
- Se describe mediante el coeficiente de coincidencia (JMC - joint maching coeficiente)

contact. JMC is 0 for completely mismatched joint and two surfaces in contact at a few points only.

(Zhao, 1997)

Apertura

- Distancia media vacía que separa los dos lados de un discontinuidad.
- En el vació puede contener aire o agua (discontinuidad abierta) o rellena de materiales (discontinuidad rellena).

Rugosidad, coincidencia y apertura

Relación

- Una baja coincidencia esta asociada con una alta apertura.
- Un discontinuidad rugosa y bajo JMC generalmente posee mayor apertura que una discontinuidad lisa y bajo JMC.
- Una discontinuidad rugosa con alto JMC luego de un movimiento de corte genera un estado de bajo JMC y gran apertura.

(ISRM - Zhao, 2016)

Efecto en las propiedades de resistencia

- La rugosidad y la apertura controlan la resistencia al corte y el movimiento por corte, es decir, la estabilidad o el deslizamiento de un bloque.
- Una discontinuidad abierta tiene baja resistencia al corte. También esta asociada el flujo de agua.
- El material de relleno afecta la resistencia al corte y la deformabilidad de la discontinuidad.

Tilt test (campo y laboratorio)

3. Stimpson type tests

2. Tests performed on square based slabs

4. Tests on discs

(Xia-Ting, 2017)

Г

$$\phi_{\rm b} = {\rm median}\left[\tan^{-1}\left(\frac{\sqrt{3}}{2}\tan\beta_{i=1,\ldots,5}\right)\right]$$

$$\phi_{\rm b} = \text{median } \beta_{i=1,\dots,5}$$
. (ISRM - SM, 2018)

TABLE 6.11 Basic Friction Angles $\phi_{\rm b}$ for Different Rocks

Rock Family	Rock Type	$\phi_{\rm b}$ Dry (Degrees)	$\phi_{ m b}$ Wet (Degrees)
Sedimentary	Conglomerate	35	
	Chalk	32	
	Limestone	31–37	27–35
	Mudstone	31–33	27–31
	Sandstone	26-35	25-34
	Shale		27
	Siltstone	31–33	27-31
Igneous	Basalt	35–38	31–36
	Dolerite	36	32
	Coarse-grained granite	31–35	31–33
	Fine-grained granite	31–35	29–31
	Porphyry	31	31
Metamorphic	Amphibolite	32	
	Gneiss	26–29	23–26
	Schist	25–30	21
	Slate	25–30	21

Geomecánica aplicada al minado subterráneo

Corte directo

Elasticidad discontinuidades (laboratorio)

¿Dónde recopilar los datos?

Mapeo de exposición rocosa

Núcleo de roca perforación diamantina

Recopilación de data 01 geomecánica

Contenido

Caracterización del mac rocoso y sus componentes

La presencia del agua en el macizo rocoso

Mediciones de esfuerzos in situen Perú

Clasificaciones geomecánicas

El mod geomecanico

Agua subterránea

Nivel freático:

Es el nivel bajo el cual la masa rocosa se encuentra totalmente saturada

Agua subterránea:

Entender el movimiento del agua en el macizo rocoso que ocurre bajo el nivel freático

Rocas ígneas y metamórficas tienen muy bajar permeabilidad. Algunas rocas sedimentarias (areniscas, conglomerados) pueden ser porosas y permeables.

Masa rocosa es fracturada. Las fracturas proporcionan un camino para el flujo. La masa rocosa es permeable

Porosidad y permeabilidad

DCR Ingenieros S.R.Ltda. Geomecánica en Minería y Obras Civiles

$$n = \frac{100V_v}{V}$$

porosidad (porcentaje) Volumen de los vacíos Valumen total

Primary porosity

n

V

 V_v

(a) unconsolidated well-sorted sand; high porosity

 (b) sand porosity reduced by admixture of fines or cementation

Secondary porosity

 (c) Consolidated rock rendered porous by fracturing
 e.g. crystalline basement

 (d) Consolidated fractured rock with porosity increased by solution

Total Porosity > Effective Porosity

Effective Porosity

Permeabilidad:

Capacidad para transmitir fluidos (agua)

Porosidad y Permeabilidad (cualitativa)

- Zona fracturada alta continuidad lateral (discontinuidades)
- Medio poroso baja continuidad lateral (roca intacta)

- a) Puramente fracturado: porosidad y permeabilidad solo por fracturas, bloques de roca intacta no permiten el flujo.
- **b) Porosidad doble:** fracturas y bloques de roca intacta permiten el flujo.
- c) Medio heterogéneo: fracturas rellenas, la posibilidad de flujo de las fracturas se reduce.

Porosidad y permeabilidad masa rocosa: Flujo principalmente por las discontinuidades. La interconexión entre las discontinuidades, espaciamiento, apertura y orientación decide la porosidad y permeabilidad

Conductividad hidráulica (cuantitativa)

Clasificación hidrogeológica de las formaciones geológicas

DCR Ingenieros S.R.Ltda. Geomecánica en Minería y Obras Civiles

 Aquifero: Formación geológica saturada con agua buena conductividad hidráulica (mayor 10⁻⁶ ms⁻¹)

b) Aquitardo:

Formación geológica con insuficiente conductividad hidráulica (10⁻¹⁰ a 10⁻⁶ ms⁻¹)

c) Acuicludo:

Impermeable muy baja conductividad hidráulica (menor 10⁻¹⁰ ms⁻¹)

Presión de poros

El agua subterránea es importante en la geomecánica

- i. La presión de agua es un campo de esfuerzos, por tanto, contribuye con el campo de esfuerzos in situ (esfuerzos efectivos).
- El agua subterránea modifica los parámetros de resistencia de la masa rocosa (roca intacta y discontinuidades). Ejemplo la fricción.
- iii. Cuando el agua esta presente, la ingeniería se torna más compleja. Por ejemplo, es más complicado la realización de un túnel en condiciones de flujo de agua y alta presión de agua.

Considerar el secuenciamiento del minado (tajeos condiciones drenadas)

Recopilación de data 01 geomecánica

Caracterización del mac rocoso y sus componentes

La presencia del agua en el macizo rocoso

Mediciones de esfuerzos in situ en Perú

Clasificaciones geomecánicas

El mod geomecanico

Contenido

Esfuerzos in situ

Tensor de esfuerzos

Geomecánica aplicada al minado subterráneo

Mapa mundial de esfuerzos Tipo de datos

Mapa mundial de esfuerzos Régimen y calidad

- i. La calidad de data varía de entre el tipo A al tipo E.
- ii. El tipo A representa el dato de mayor calidad y el tipo E representa el dato de menor calidad.
- iii. En general los datos con calidad tipo A, B y C son considerados confiables para ser usador en los análisis de patrón de esfuerzos.

Calidad	Variación S _{Hmax}
А	± 15°
В	± 20°
С	± 25°
D	± 40°
E	Mayor ± 40°

Mapa mundial de esfuerzos Análisis de la data

Stress indicator type	A–E	A–C
Focal Mechanisms Single (FMS) Focal Mechanisms Inversion (FMF)	30,341 ^c	26,730 ^c 1132
Borehole Breakouts (BO, BOC, BOT)	6301	2962
Hydraulic Fracturing (HF, HFG, HFM, HFP)	941 907	430 341
Geological (GFI, GFM, GFS, GVA) Overcoring (OC)	1601 927	704 4 88
Other (BS, FMA, PC, SWB, SWL, SWS) Sum	565 42,870	78 32,465

DCR Ingenieros S.R.Ltda.

Geomecánica en Minería y Obras Civiles

Mapa mundial de esfuerzos Perú

Recopilación de mediciones Ejemplo - Canadá

Medición de esfuerzos SM - ISRM

1d

Recopilación de data 01 geomecánica

Caracterización del mac rocoso y sus componentes

La presencia del agua en el macizo rocoso

Mediciones de esfuerzos in situ en Perú

Clasificaciones geomecánicas

El mod geomecanico

Contenido

Clasificaciones geomecánicas

Rock mass rating (RMR)

- 1. Uniaxial compressive strength (UCS) of intact rock material
- Rock quality designation (RQD) 2.
- Joint or discontinuity spacing 3.
- Joint condition 4.
- Groundwater condition 5
- Joint orientation 6.

Sistema Q

$Q = [RQD/J_n][J_r/J_a][J_w/SRF]$

- RQD = Degree of jointing (Rock Quality Designation)
 - $J_n = Joint \text{ set number}$
 - $J_r = Joint roughness number$
 - $J_a =$ Joint alteration number
 - $J_w =$ Joint water reduction factor
- SRF = Stress Reduction Factor

Qu	alitative		Compressive strength Point load strength	
des	criptior		Aplicaciones prácticas en	Ratin
Extr	remely st			5
Ver	y strong		ingenieria	2
Stro	ong			7
Me	dium stre	:	Estimor el esturos soósimos de	ł
We	ak	Ι.	Estimar aberturas maximas de)
Ver	y weak		las excavaciones.	
Extr	remely w)
At c *Ter Sour	ompressiv <i>rms redefi</i> rces: Bien	ii.	Estimar tiempo de auto sostenimiento.	as soi
ТАВ	LE 8.2 Jo			_
	Conditi	iii	Dimensionar el sostenimiento	Jr
A	Massive,			
В	One joir			4.0
С	One joir	iv/	Estimar las propiedades de la	2.0
D	Two joir	1.		1.5
E	Two joir		masa rocosa.	1.5
F	Three jo			0.5
G	Three jo random		Derémetres de entrede pars el	1.0
н	Four or i	۷.	Parametros de entrada para el	
	random, "sugar c		diseño de excavaciones rocosas.	
J	Crushed .	оск, сан		in In 3m.

For intersections use $(3.0 \cdot J_n)$. For portals use $(2.0 \cdot J_n)$. Source: Barton et al., 1974.

or discontinuity that is least favorable for stability both from the point of view of orientation and shear resistance. T Source: Barton, 2002.

Geomecánica aplicada al minado subterráneo

Clasificación geomecánica GSI

- i. Nace 1992 1994 gracias a los trabajos de David Wood y Hoek.
- ii. El RMR era usado para calcular las constantes del criterio de H-B. El RMR esta influenciado en gran magnitud por el RQD que es prácticamente 0 para macizos rocosos débiles, por ello, el RMR era complicado de aplicar a macizos de rocosos de baja calidad. La correlación entre el RMR y las constantes m_b y s del criterios de H-B no resultaban razonables para macizos rocosos fracturados.
- iii. Hoek (1994) afirmó que los parámetros de agua y corrección por orientación de discontinuidades del RMR se tratan explícitamente en análisis numéricos de esfuerzos efectivos, es decir, la incorporación de estos parámetros en las propiedades de la masa rocosa no es apropiada.
- iv. Se necesitaba un parámetros que sirviera de puente entre la descripción geológica de la masa rocosa y el criterio de falla H-B.

Basado en dos factores fundamentales la estructura y condición de discontinuidades.

Clasificación geomecánica GSI

GSI Cuantificación

Gráfico del GSI (Sonmez & Ulusay, 1999)

Define dos factores:

- Valoración de estructura (SR)
- Valoración de condición de superficie (SCR)

 $SCR = R_r + R_w + R_f$

Geomecánica aplicada al minado subterráneo

GSI Cuantificación

GSI Cuantificación

GSI ¿Dónde no usar?

- Un supuesto fundamental del criterio de falla de H-B para la estimación de la resistencia y deformación de la masa rocosa es que la deformación y la falla están controladas por deslizamiento y rotación de los bloque de roca intacta.
- ii. En un minado a gran profundidad (más de 1000 m) la masa rocosa esta confinada por los altos esfuerzos y la masa rocosa se asemeja a la roca intacta.
- iii. En este ambiente de altos esfuerzos los procesos de falla de la masa rocosa están dominados por la falla frágil (spalling, slabbing y estallido de roca).
- iv. En tales condiciones el valor del GSI tiende a 100 y su aplicación para estimar las propiedades de resistencia y deformación de la masa rocosa pierden sentido.

(Zuo, 2020)

1e

Recopilación de data 01 geomecánica

Caracterización del mad rocoso y sus componentes

La presencia del agua en el macizo rocoso

Mediciones de esfuerzos in situ en Perú

Clasificaciones geomecánicas

El modelo geomecánico

Contenido

El modelo geomecánico

(Modificado, Read & Stacey, 2009)

El modelo geomecánico

Geomecánica aplicada al minado subterráneo

Faults

2 x10⁻²

El modelo geomecánico

Incertidumbre de la data

Propiedades y características de los materiales naturales son intrínsecamente variables:

Incertidumbres geológicas:

Imprevisibilidad asociada con la identificación, la geometría y las relaciones entre las diferentes litologías y estructuras en los modelos geológicos (contactos litológicos, fallas mayores, aspectos geológicos no investigados).

Incertidumbre de los parámetros:

Imprevisibilidad de los parámetros en el modelo geomecánico. Incertidumbre asociada a parámetros de resistencia y deformación de la masa rocosa, presión del agua subterránea.

(Modificado, Read & Stacey, 2009)

Sugerencias del grado de confianza

Table 3	Suggested	degrees of	confidence in	n the rock	properties for the	e different st	ages of a m	ining project
	00	0			r - r		0	01 5

Project level status	Conceptual (%)	Pre- Feasibility (%)	Feasibility (%)	Design and construction (%)	Operations early to mid- life or temporary (%)	Operations mature or permanent (%)
Read and Stacey (2009)	> 30	40–65	60–75	70–80	> 80	
Grenon et al. (2015)	> 30	40–65	60–75	70–80	80-85	> 85
Cepuritis and Villaescusa (2012)	< 50	50–60	60–70	70	80	85 (Fillion, 2019)

¿la data disponible es adecuada para la etapa actual del proyecto?

¿cuánta data adicional requiero para lograr un grado de confianza mayor?

Grado de confianza - ensayos de laboratorio - UCS

20

10

0

(Fillion, 2019)

Metodología de cálculo:

CI

Confidence interval (Fillion & Handjigeorgiou, 2017)

TLDC

6

Frequency 4

0

Target level of data confidence (Grenon, 2015)

Peridotite (10b)

50 100 150 200 250 300 350 400 450 500 550 600

Uniaxial compressive strength (MPa)

Grado de confianza objetivo: 85 %

0,995

0.95

0.9

0.5

0.25

0.1 0.05

0.001

0 50 100 150 200 250 300 350 400 450 500 550 600

Uniaxial compressive strength (MPa)

Probability 0.75

Table 4 Confidence intervals and minimum number of specimens required to reach an 85% confidence level, obtained with the Cl and TLDC methods for PM14 UCS data

Geomecánica aplicada al minado subterráneo

160

120

80

10b

10c

4a

6a

6b

Rock unit

6e

9a

9b Ore

Grado de confianza - ensayos de laboratorio - UCS

 Table 10
 CI and TLDC obtained for rock unit 9a UCS laboratory test results conducted for a scoping study (2014 database) and a prefeasibility study (compiled 2014–2015 database) undertaken for PM14 mining project

Rock unit	n	Data distribution	ata Sample average stribution (MPa)	cv	Fillion and Hadjigeorgiou (2017)			Grenon et al. (2015)				
						Confidence interval for $p = 1.35$ ($E_r = 15\%$)		Confidence interval for $CI = 95\%$		E_r (%)	TLDC (%)	•
					Lower (MPa)	Upper (MPa)	CI (%)	Lower (MPa)	Upper (MPa)	-		Tab prefe
9a 2014	10	Lognormal	205.0	0.32	176.8	238.7	82.6	163.2	258.6	23.2	76.8	Roc
9a 2014–2015	28	Normal	210.6	0.33	179.2	241.9	97.7	183.9	237.3	12.7	87.3	

ole 10 CI and TLDC obtained for rock unit 9a UCS laboratory test results conducted for a scoping study (2014 database) and a reasibility study (compiled 2014–2015 database) undertaken for PM14 mining project

cock unit	n	n Data distribution	ta Sample average tribution (MPa)	cv	Fillion and Hadjigeorgiou (2017)			Grenon et al. (2015)			
					Confidence interval for $p = 1.35 \ (E_r = 15\%)$		Confidence interval for $CI = 95\%$		E _r (%)	TLDC (%)	
					Lower (MPa)	Upper (MPa)	CI (%)	Lower (MPa)	Upper (MPa)		
9a 2014	10	Lognormal	205.0	0.32	176.8	238.7	82.6	163.2	258.6	23.2	76.8
9a 2014–2015	28	Normal	210.6	0.33	179.2	241.9	97.7	183.9	237.3	12.7	87.3

(Fillion, 2019)

Grado de confianza - ensayos de laboratorio - UCS

 Table 11
 Practical example for the probability that the compressive strength is exceeded, i.e. P (strength < 118 MPa), at the roof of a circular excavation using the CI and TLDC analysis methods at two different stages of a mining project

Method	Project stage	Distribution	Average strength (MPa)	Standard deviation (MPa)	P(UCS < 118 MPa)
CI	2014	Lognormal	176.8 (5.175)	65.9 (0.313)	0.10
	2014-2015	Normal	179.2	68.8	0.19
TLDC	2014	Lognormal	163.2 (5.095)	65.9 (0.313)	0.15
	2014-2015	Normal	183.9	68.8	0.17

The results in brackets are for the log-transformed variable $Y = \ln(X)$

Geomecánica aplicada al minado subterráneo

ldea final

Dike intrusion along set II fractures

"La toma de datos de entrada confinable para los diseños de ingeniería de infraestructura en la masa rocosa es una de más difíciles tareas que tienen que enfrentar los ingenieros"

Bieniawski (1984)

Gracias